TECHNICAL NOTE

Characterization of 22 microsatellite marker loci in the Madagascar rousette (*Rousettus madagascariensis*)

Andoniaina R. Andrianaivoarivelo · Gary D. Shore · Susie M. McGuire · Richard K. B. Jenkins · Olga Ramilijaona · Edward E. Louis Jr. · Rick A. Brenneman

Received: 18 July 2008 / Accepted: 13 August 2008 / Published online: 29 August 2008 © Springer Science+Business Media B.V. 2008

Abstract Twenty-two nuclear microsatellite loci were isolated from a genomic DNA library derived from Madagascar's *Rousettus madagascariensis*. Marker characteristics were determined from a single population (37 individuals) from Fort Dauphin (southeastern Madagascar). Sixteen of the 22 loci were within Hardy–Weinberg expectations. These loci are highly informative with polymorphic information content values ranging between 0.757 and 0.916. These loci will provide valuable information for the study of population genetics and gene flow within this species of bats. Due to the dramatic reduction and alteration of their habitat, data generated utilizing this marker suite will potentially provide additional information for the effective long-term management of this near-threatened bat species.

Keywords Genetic markers · *Rousettus* madagascariensis · Pteropodidae · Madagascar · Microsatellites

A. R. Andrianaivoarivelo · O. Ramilijaona Department of Animal Biology, Faculty of Sciences, University of Antananarivo, B.P. 906, Antananarivo, Madagascar

A. R. Andrianaivoarivelo · R. K. B. Jenkins Madagasikara Voakajy, B.P. 5181, Antananarivo 101, Madagascar

G. D. Shore · S. M. McGuire · E. E. Louis Jr. ·
R. A. Brenneman (⊠)
Center for Conservation and Research, Henry Doorly Zoo, 3701 South 10th Street, Omaha, NE 68107, USA
e-mail: rabr@omahazoo.com

R. K. B. Jenkins

School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK

Rousettus madagascariensis is the smallest of the three endemic frugivorous bats of Madagascar (Bergmans 1990). The ability of this genus to echolocate and hover (Kulzer 1956; Novock 1958) enables it to forage within forests where it is likely to be an important nocturnal pollinator. This is among the few endemic species of bats covering a large distribution in lowland areas of the island, however, few roost sites are known. Roost sites were located in both shallow and deep caves (Juste et al. 1999) with infrequent human disturbance. Colony sizes ranged from 300 to several thousand. According to the IUCN Red List (IUCN 1999), this species is listed as one of lower risk, near threatened (LR/nt). Twenty-two nuclear microsatellite loci were isolated from genomic DNA derived from R. madagascariensis to estimate population genetic parameters for a population in southeastern Madagascar (Fort-Dauphin).

Genomic DNA was isolated from tissue from R. madagascariensis sampled in Kianjavato Classified Forest, Madagascar. Procedures for construction of the genomic DNA library, identification of plasmids containing (GT)n inserts, plasmid preparation, and sequencing were carried out as generally described by Hillis et al. (1996). Isolated genomic DNA was digested using Sau3A restriction enzyme. The digested DNA was sized using Clontec[©] chromaspin columns to remove fragments under 400 bp. Sized DNA was ligated to primers forming blunt-ended DNA pieces. Ligated DNA was enriched using PCR based on Moraga-Amador et al. (2001), a modification of Kandpal et al. (1994). Enriched DNA was denatured and a biotinilated probe annealed to the DNA. The biotinilated DNA was captured using Vector Laboratory (Burlingame, CA) Vectrex Avidin D[©] and non-annealed DNA was washed away. After releasing captured DNA from the Vectrex Avidin D[©], a second round of PCR enrichment was performed. An Invitrogen (Carlsbad, CA) TOPO A[©]

Locus	Primer sequence (5' to 3')	Temp (°C)	Repeat motif	PIC	Size range	GenBank accession no.
66HDZ20	F: HEXTCC CCC TCT CTC CGA CTC	62	(GT) ₂₀	0.843	194–216	EU883996
	R: CCT GCG TTT TCT GTT CTG G					
66HDZ80	F: HEXGGC TAT CAA GGG AAG GGT G	58	(GT) ₁₄	0.866	172-216	EU883997
	R: GGG AAG ACA GCA ATA ACA ACC					
66HDZ82	F: FAMTCT CTC AAT GCC CGT CCT C	60	(CA) ₂₆	0.898	237-273	EU883998
	R: CAC TTT CAA ATG CCC TGC TC					
66HDZ91	F: FAMGAC TTT GCT TCT TTC AGA TAC CA	62	(CA) ₂₁	0.901	125-173	EU883999
	R: GAG GA GAC AGA GTT TTC CCT TTA					
66HDZ95	F: HEXCAG GAT TTA TTA CCC CGC C	60	(CA) ₂₀	0.873	245-275	EU884000
	R: GCT GTG ACC ACT CTG CCC					
66HDZ105	F: HEXGAA AGA CCA GAA TCC TCA AAA TG	58	(CA) ₁₃	0.863	190-220	EU884001
	R: TGA TAA CAA GTG GAA AAA AAT AAA GTA G					
66HDZ106	F: HEXTTT GTT TGT TTT ATG TTT TTT TGC	56	(CA) ₂₁	0.757	171–189	EU884002
	R: TGT TCC TTT TTA GCA TCT CCA G					
66HDZ110	F: HEXCTT TGG TTT TCT GTG TTT CTG C	54	(GT) ₂₄	0.877	177-291	EU884003
	R: CAG GGA ATA GGG TGT CTT TGA					
66HDZ117	F: FAMTTT GTC TTT TCA TCT CTC TAT CCC	60	(CA) ₁₈	0.808	165–197	EU884004
	R: TTT TTG TGC CAG AAT ACT TTG AC					
66HDZ139	F: FAMCCA TAG CCA TCT CTC CTT CC	56	(CA) ₂₆	0.849	105-135	EU884005
	R: TGT TGG GTA TTT CTG GTT TGG					
66HDZ304	F: FAMCAC TAT GAT GAA GGG GAG GG	62	(GT) ₂₂	0.851	157-179	EU884006
	R: GGT CAG TCA GGG GAG GAA C					
66HDZ311	F: FAMGCC AAA TCT CTC ATC TTC AGC	60	(CA) ₂₈	0.886	174–216	EU884007
	R: CAA TAG GAA AAA CAG CAA GGA G					
66HDZ327	F: HEXACG TCT GTC CCC ACT ATT GC	50	(GT) ₃ (GT) ₁₉	0.88	149–173	EU884008
	R: GAA CCC GAG AGA GCA GGC					
66HDZ334	F: ^{FAM} ATA ATG AAT CAC GAC AGA ACG AG	60	(CA) ₁₇	0.884	173–197	EU884009
	R: CTA CAA CAG GCT TTG GGC A					
66HDZ337	F: FAMTGA AGC AGA ACC AAG ATA GGG	54	(CA) ₂₇	0.916	169–203	EU884010
	R: GTG GGA GAG ACG GCG TG					
66HDZ339	F: HEXAGG AAA GAC TCC AAA AGA CAA TG	58	(CA) ₂₄	0.860	153–179	EU884011
	R: GGA AAA AGC AAA TCT CGT ATG TT					
66HDZ340	F: HEACCA CCC TGT TTG GTC CC	60	$(CA)_{14}$	0.851	136–152	EU884012
	R: TCC CCC TCC TCT GTT TCC					
66HDZ341	F: TAMCAA GCA TAC AAA GTG GGG A	58	$(CA)_9 CG (CA)_{13}$	0.811	231–257	EU884013
	R: ATG TCA TCT GTC TCT GAA ATG G					
66HDZ343	F: HEACCA CCC ATC TTG GCT TCT	58	$(CA)_{22}$	0.880	114–140	EU884014
	R: CGA TAG GTA ATC ATA GGA ACG AA					
66HDZ361	F: The AGGT TTT GTC CCC CAG CC	60	$(CA)_{15}$	0.856	181–205	EU884015
	R: CAG AAG CCC CAG CAC AGT C					
66HDZ407	F: CALL ACC CAG GAC GGC ATC AC	56	$(GT)_2 (GA)_3 (GT)_{15}$	0.765	142–162	EU884016
	R: CTC TTC GGC TTC CAC TTA GG			0.0.1		
66HDZ413	F: TATA ATG CCC TTA GCA CTG GAC A	54	$(CA)_{21}$	0.845	202–226	EU884017
	R: TAA ATG TIT GTG TGT GGA GGT G					

 Table 1
 Primer sequences with fluorescent dye labels, optimized annealing temperature, locus characteristics, and GenBank accession numbers of 22 Rousettus madagascariensis—specific microsatellite loci

plasmid ligation was performed following this PCR. Following transformation, cells were plated onto LB agar plates including ampicillin and X-gal. Plates were picked for positive white colonies that were placed on Pall (East Hill, NY) Biodyne B nylon membranes. A Southern blot of the colonies was done using DIG-labeled oligonucleotide. Plasmid preps of the positive colonies from the Southern blot were sequenced and primers were designed from the two regions flanking the microsatellite repeat motif. Of 4,430 clones screened, 1,080 were positive for a microsatellite insert and the first 22 designed and tested polymorphic are reported here.

Tissue samples collected from the patagium of each bat were stored in an ambient temperature storage buffer (Longmire et al. 1992) from 37 R. madagascariensis individuals representing one roost site. Genomic DNA was isolated using standard protocols (Sambrook et al. 1989). PCR amplification was carried out in a 25 µl reaction volume using an MBS thermocycler (Thermo Electron Corporation, Milford, MA) with approximately 50 ng of genomic DNA template. Final amplification conditions consisted of 12.5 pmol unlabelled reverse primer, 12.5 pmol fluorescently labeled forward primer, 1.5 mM MgCl₂, 200 µM each dNTP, and 0.5 units of Taq DNA polymerase (Promega; Madison, WI). The thermal profile for PCR amplification was 95°C for 5 min, followed by 35 cycles of 95°C for 30 s, a primer-specific annealing temperature for 30 s (Table 1), 72°C for 30 s, ending with a single extension of 72°C for 10 min. Allele sizes were determined by separation of the PCR products via POP 4 capillary buffer electrophoresed in an ABI 3100 DNA Analyzer (Applied Biosystems, Inc; Foster City, CA). Fragment length genotypes were assigned by GeneScan (Applied Biosystems, Inc.) using GeneScan-500 [Tamra] size standard. Loci characterizations are presented in Table 1.

The data set was analyzed for errors using MICRO-CHECKER (Van Oosterhaut et al. 2004) and MSA (Dieringer and Schlötterer 2003). Null alleles and polymorphic information content (PIC) were estimated using CERVUS v.2.0 (Marshall et al. 1998; Slate et al. 2000). Marker independence was tested following a Bonferroni correction for multiple tests in FSTAT using the linkage disequilibrium option (Goudet 1995, 2001) before population genetic parameters were estimated using Genepop 4.0 (Raymond and Rousset 1995) and FSTAT (Table 2).

Six of the loci showed departure from HWE owing to a deficit of heterozygotes. This deficit was diagnosed in MICROCHECKER and CERVUS as high frequencies (freq > 0.10) of null alleles in this population. The number of alleles ranged from 7 to 19 and informativeness, interpreted from polymorphic information content (PIC), ranged from 0.757 to 0.916 (66HDZ106 and 66HDZ337 respectively for both parameters). This marker suite should

Table 2 Number (k) of alleles detected, allelic richness (A.R.), observed (Ho) and expected (He) heterozygosities, *P*-values and standard errors (SE) for Hardy–Weinberg Exact Tests (HWE), and among 22 microsatellite loci screened across a population of 37 individuals of *R. madagascariensis* from southeastern Madagascar

	k	A.R.	Но	He	HWE ^a	SE
66HDZ20	10	9.946	0.568	0.871	0.0003*	0.3514
66HDZ80	12	11.941	0.838	0.890	0.371	0.0594
66HDZ82	16	15.935	0.892	0.917	0.6647	0.0282
66HDZ91	18	17.723	0.784	0.921	0.0525	0.1505
66HDZ95	12	11.939	0.703	0.896	0.009*	0.2180
66HDZ105	13	12.941	0.784	0.887	0.1327	0.1179
66HDZ106	7	6.998	0.541	0.793	0.0008*	0.3217
66HDZ110	16	14.937	0.892	0.898	0.5789	0.0063
66HDZ117	11	10.836	0.811	0.840	0.7725	0.0357
66HDZ139	11	10.972	0.611	0.875	0.0001*	0.3047
66HDZ304	13	12.916	0.778	0.873	0.088	0.1103
66HDZ311	17	16.621	0.865	0.907	0.2967	0.0471
66HDZ327	13	13.000	0.943	0.902	0.3505	-0.0457
66HDZ334	13	12.944	0.946	0.905	0.6746	-0.0456
66HDZ337	19	18.777	0.595	0.934	0.0000*	0.3664
66HDZ339	12	11.833	0.811	0.886	0.4712	0.0855
66HDZ340	12	11.784	0.703	0.877	0.1759	0.2014
66HDZ341	12	11.89	0.676	0.837	0.0143*	0.1946
66HDZ343	13	12.836	0.757	0.903	0.2072	0.1635
66HDZ361	13	12.838	0.703	0.881	0.0114	0.2044
66HDZ407	11	10.836	0.838	0.799	0.52	-0.0499
66HDZ413	11	10.89	0.784	0.872	0.8063	0.1023

* Null allele frequency detected >0.10

^a Probability of satisfying Hardy Weinberg Expectations following χ^2 test. Monte Carlo Markov Chain parameters: 100 batches and 5,000 iterations per batch

be useful in population genetic studies comparing *Rousettus madagascariensis* across the island of Madagascar.

Acknowledgements The authors wish to acknowledge the generosity of Bill and Berniece Grewcock for their support of student interns. This research was also supported by grants from the Ahmanson Foundation, which have provided the laboratory with three ABI automated DNA sequencers. We graciously thank the Theodore F. and Claire M. Hubbard Family Foundation for supporting Henry Doorly Zoo/Madagascar Biodiversity and Biogeography Project. This project would not have been possible without the support of the staff, guides, drivers, and porters of Madagasikara Voakajy (Madagascar). The Association Nationale pour la Gestion des Aires Protégées (ANGAP) and the Ministère des Eaux et Forêts, Madagascar, provided us the research authorization; FFI and Disney Wildlife Conservation Fund granted the field expedition during the tissues sample collection. We thank George P. Emodi for PCR assistance.

References

Bergmans W (1990) Taxonomy and biogeography of the African fruit bats (Mammalia Megachiroptera). 3. The genera *Scotonycteris* Matchie, 1984, *Casinycteris* Thomas, 1910, *Pteropus* Brisson, 1762, and *Eidolon* Rafinesque, 1815. Beautifortia 40(7):111–177

- Dieringer D, Schlötterer C (2003) Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169. doi:10.1046/j.1471-8286.2003. 00351.x
- Goudet J (1995) FSTAT, a computer program to test F-statistics. J Hered 86:485–486
- Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet (1995)
- Hillis DM, Mable BK, Larson A et al (1996) Nucleic acids IV: sequencing and cloning. In: Hillis DM, Moritz C, Zimmer EA (eds) Molecular systematics, 2nd edn. Sinauer Associates, Inc., Sunderland, pp 321–381
- IUCN (1999) 1999 IUCN Red List of threatened species. World Conservation Union, Gland
- Juste JB, Alvarez Y, Tabares E et al (1999) Phylogeography of African Fruit Bats (Megachiroptera). Mol Phylogenet Evol 13(3):596–604. doi:10.1006/mpey.1999.0669
- Kandpal RP, Kandpal G, Weissman SM (1994) Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-species markers. Proc Natl Acad Sci USA 91:88–92. doi:10.1073/pnas.91.1.88
- Kulzer E (1956) Flughunde erzeugen Orientierungslaute durch Zungenschlag. Naturwiss 43:117–118. doi:10.1007/BF00600896

- Longmire JL, Gee GF, Hardekoff CL, Mark GA (1992) Establishing paternity in whooping cranes (Grus americana) by DNA analysis. Auk 109:522–529
- Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655. doi:10.1046/j.1365-294x.1998.00374.x
- Moraga-Amador D, Farmerie BA, Brazeau D, Clark G (2001) "Tools for developing molecular markers." Interdisciplinary center for biotechnology research laboratory manual. The University of Florida Gainesville, Florida, pp 11–65
- Novock A (1958) Orientation in Paleotropical bats. II. Megachiroptera. J Exp Zool 137:443–459. doi:10.1002/jez.1401370305
- Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecuminicisms. J Hered 86:248–249. Available: http://wbiomed.curtin.edu.au/genepop/
- Sambrook J, Fritch EF, Maniatus T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, New York
- Slate J, Marshall TC, Pemberton JM (2000) A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol Ecol 9(6):801–808. doi:10.1046/j.1365-294x. 2000.00930.x
- Van Oosterhaut C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535– 553. doi:10.1111/j.1471-8286.2004.00684.x